Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.
نویسندگان
چکیده
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
منابع مشابه
Direct ultrashort-pulse intensity and phase retrieval by frequency-resolved optical gating and a computational neural network.
Ultrashort-laser-pulse retrieval in frequency-resolved optical gating has previously required an iterative algorithm. Here, however, we show that a computational neural network can directly and rapidly recover the intensity and phase of a pulse.
متن کاملMeasuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating
We summarize the problem of measuring an ultrashort laser pulse and describe in detail a technique that completely characterizes a pulse in time: frequency-resolved optical gating. Emphasis is placed on the choice of experimental beam geometry and the implementation of the iterative phase-retrieval algorithm that together yield an accurate measurement of the pulse time-dependent intensity and p...
متن کاملPulse retrieval in frequency-resolved optical gating based on the method of generalized projections.
We use the algorithmic method of generalized projections (GP's) to retrieve the intensity and phase of an ultrashort laser pulse from the experimental trace in frequency-resolved optical gating (FROG). Using simulations, we show that the use of GP's improves significantly the convergence properties of the algorithm over the basic FROG algorithm. In experimental measurements, the GP-based algori...
متن کاملMeasurement of the intensity and phase of attojoule femtosecond light pulses using Optical-Parametric-Amplification Cross-Correlation Frequency-Resolved Optical Gating.
We use the combination of ultrafast gating and high parametric gain available with Difference-Frequency Generation (DFG) and Optical Parametric Amplification (OPA) to achieve the complete measurement of ultraweak ultrashort light pulses. Specifically, spectrally resolving such an amplified gated pulse vs. relative delay yields the complete pulse intensity and phase vs. time. This technique is a...
متن کاملUltrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating.
Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified puls...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 88 10 شماره
صفحات -
تاریخ انتشار 2017